Scalpels
Scalpels.Scalpels
Scalpels.calc_basis_scores_scalpels
Scalpels.calc_clean_rvs_scores_basis_scalpels
Scalpels.clean_rvs_scalpels
Scalpels.rms_clean_rvs_vs_num_basis_scalpels
Scalpels.Scalpels
— ModuleModule for performing Scalpels (Self-Correlation Analysis of Line Profiles for Extracting Low-amplitude Shifts) based on a CCF timeseries.
For algorithm information, see Collier-Cameron, Ford, Shahaf et al. 2020
Author: Eric Ford Date: September 2020
Scalpels.calc_basis_scores_scalpels
— Methodcalc_basis_scores_scalpels(rvs, ccfs; σ_rvs, num_basis )
Compute the CCF basis functions and scores for a Scalpels reconstruction of CCFs Inputs:
- rvs: vector of estimated radial velocities
- ccfs: 2d array of CCFS of size (numvelocities, numspectra)
Optional Inputs:
- σ_rvs: vector of measurement uncertainties for estimated radial velocities (default: ones)
- num_basis: number of basis vectors to use for SVD reconstruction of CCFs
- sortbyresponce: set true to sort basis vectors by RV responce (default: true)
Output: (scores, basis): a NamedTuple
Notes:
- Currently Scalpels weights all velocity pixels equally and uses the σ_rvs to weight each observation.
- First element of output starts with RMS with zero basis vectors (i.e., the input RVs)
Scalpels.calc_clean_rvs_scores_basis_scalpels
— Methodcalc_clean_rvs_scores_basis_scalpels(rvs, ccfs; σ_rvs, num_basis, sort_by_responce )
Computes cleaned rvs as well as the CCF basis functions and scores for a Scalpels reconstruction of CCFs Inputs:
- rvs: vector of estimated radial velocities
- ccfs: 2d array of CCFS of size (numvelocities, numspectra)
Optional Inputs:
- σ_rvs: vector of measurement uncertainties for estimated radial velocities (default: ones)
- num_basis: number of basis vectors to use for SVD reconstruction of CCFs
- sortbyresponce: set true to sort basis vectors by RV responce (default: true)
Output: (rvs, scores, basis): a NamedTuple
Notes:
- Currently Scalpels weights all velocity pixels equally and uses the σ_rvs to weight each observation.
- First element of output starts with RMS with zero basis vectors (i.e., the input RVs)
Scalpels.clean_rvs_scalpels
— Methodclean_rvs_scalpels(rvs, ccfs; σ_rvs, num_basis )
Inputs:
- rvs: vector of estimated radial velocities
- ccfs: 2d array of CCFS of size (numvelocities, numspectra)
Optional Inputs:
- σ_rvs: vector of measurement uncertainties for estimated radial velocities (default: ones)
- num_basis: number of basis vectors to use for SVD reconstruction of CCFs
- sortbyresponce: set true to sort basis vectors by RV responce (default: true)
Output: rvs_clean: vector of estimated RVs after cleaning by scalpels
Notes:
- Currently Scalpels weights all observations equally and doesn't use the σ_rvs.
- First element of output starts with RMS with zero basis vectors (i.e., the input RVs)
Scalpels.rms_clean_rvs_vs_num_basis_scalpels
— Methodrms_clean_rvs_vs_num_basis_scalpels(rvs, ccfs; σ_rvs, max_num_basis )
Compute RMS of estimated RVs after cleaning raw RVS with Scalpels algorithm (based on CCFs)
Inputs:
- rvs: vector of estimated radial velocities
- ccfs: 2d array of CCFS of size (numvelocities, numspectra)
Optional Inputs:
- σ_rvs: vector of measurement uncertainties for estimated radial velocities (default: ones)
- maxnumbasis: maximum number of basis vectors to use for SVD reconstruction of CCFs
- sortbyresponce: set true to sort basis vectors by RV responce (default: true)
Output: rms_scalpels: vector of RMS estimated RVs after cleaning by scalpels as a function of the number of basis vectors
Notes:
- Currently Scalpels weights all observations equally and doesn't use the σ_rvs.
- First element of output starts with RMS with zero basis vectors (i.e., the input RVs)